Nature Magazine: #GenAI-#LLMs: #PEFT for #PLM’s: Parameter-Efficient Fine-Tuning (PE. . .

Source: https://www.linkedin.com/feed/update/urn%3Ali%3Ashare%3A7211023324502523905

Nature Magazine: #GenAI-#LLMs: #PEFT for #PLM’s: Parameter-Efficient Fine-Tuning (PEFT) of large-scale pre-trained language models: As PLMs scale up, fine-tuning and storing all the parameters is prohibitively costly and eventually becomes practically infeasible. This necessitates a new branch of research focusing on the parameter-efficient adaptation of PLMs, which optimizes a small portion of the model parameters while keeping the rest fixed, drastically cutting down computation and storage costs.
HTML https://lnkd.in/eX6GpxRB : PDF https://lnkd.in/ePDtVGFe .

#Generative #ArtificialIntelligence #LargeLanguageModels #InDepth #Focus

#PEFT: PEFT for LLMs: #Comprehensive #Survey: https://lnkd.in/e6yVCEGF PDF: https://lnkd.in/eAD48d_x .
PEFT is a practical solution by efficiently adapting the large models over the various downstream tasks. PEFT refers to the process of adjusting the parameters of a pre-trained large models to adapt it to a specific task or domain while minimizing the number of additional parameters introduced or computational resources required.

Hugging Face Notebooks: #Fine-#tune #pretrained #model:
#Colab [Mixed: https://lnkd.in/eyqDc9ZD ; PyTorch: https://lnkd.in/efc2wVQE; TensorFlow: https://lnkd.in/eb83uN-e ]
#StudioLab: [Mixed: https://lnkd.in/eKCnhudR ; PyTorch: https://lnkd.in/eDvPuDfm; TensorFlow: https://lnkd.in/eAUEYyKC%5D

AIMLExchange.com Meta-GenAI Meta-Search Engine :
Top GenAI-LLMs on Top GenAI-LLMs Technical Topics.

#PromptEngineering:
#A: AIMLExchange.com #C #ChatGPT – #P #Perplexity – #Y #You

What are advantages & limitations of PLMs?
#A https://lnkd.in/eZQj3GRc
#C https://lnkd.in/e6agV-_9
#P https://lnkd.in/eXdU6tyg
#Y https://lnkd.in/eGPxS4DP

Why’s PEFT of large-scale PLMs important?
#A: https://lnkd.in/eztmnTaS
#C https://lnkd.in/esm7mkJk
#P https://lnkd.in/ek5FjuMF
#Y https://lnkd.in/eSZ7Gi-w

How to #Assess #Strengths & #Limitations of PLMs and diverse PEFTs for PLMs?: #A: https://lnkd.in/eBSgQRqi
#C https://lnkd.in/eae8MtVu
#P https://lnkd.in/ea8bhKVq
#Y https://lnkd.in/efFw9xWr

How to resolve model overfit & underfit for PLMs using PEFTs to balance bias-variance tradeoffs?
#A: https://lnkd.in/eZSq-fKs
#C https://lnkd.in/ea7FCugd
#P https://lnkd.in/erqAqNFw
#Y https://lnkd.in/eq2mzQyu


New York State: Join Dr. Yogi Malhotra to get up to speed on Cloud Technology.
USAF-AFRL Ventures: Do Something Epic: Save the World™:
We Create the Digital Future™. You Can Too! Let’s Show You How!
AIMLExchange™: AIMLExchange.com: We Create the Digital Future™
BRINT™: BRINT.com: From Future of Finance™ to Future of Defense™
C4I-Cyber™: C4I-Cyber.com: Because the Future of the World Depends Upon It™

AWS-Quantum Valley Building the Future of AI-Quantum Networks: Global Risk Management Network LLC-NY

Silicon Valley’s Next Big Thing™: CEO-CTO-CFO Know-Build-Monetize™ Networks: Join The CxO Metaverse™

C4I-Cyber Quantum Valley-SiliconValley Digital Pioneer USAF-USSF Ventures Engineering Sustainability

Nature Magazine: #GenAI-#LLMs: #PEFT for #PLM's: Parameter-Efficient Fine-Tuning (PEFT) of large-scale pre-trained language models: "As PLMs scale up, fine-tuning and storing all the parameters is… | Dr. Yogesh Malhotra
Nature Magazine: #GenAI-#LLMs: #PEFT for #PLM's: Parameter-Efficient Fine-Tuning (PEFT) of large-scale pre-trained language models: "As PLMs scale up, fine-tuning and storing all the parameters is prohibitively costly and eventually becomes practically infeasible. This necessitates a new branch of research focusing on the parameter-efficient adaptation of PLMs, which optimizes a small portion of the model parameters while keeping the rest fixed, drastically cutting down computation and storage costs." HTML https://lnkd.in/eX6GpxRB : PDF https://lnkd.in/ePDtVGFe . #Generative #ArtificialIntelligence #LargeLanguageModels #InDepth #Focus #PEFT: PEFT for LLMs: #Comprehensive #Survey: https://lnkd.in/e6yVCEGF PDF: https://lnkd.in/eAD48d_x . "PEFT is a practical solution by efficiently adapting the large models over the various downstream tasks. PEFT refers to the process of adjusting the parameters of a pre-trained large models to adapt it to a specific task or domain while minimizing the number of additional parameters introduced or computational resources required." Hugging Face Notebooks: #Fine-#tune #pretrained #model: #Colab [Mixed: https://lnkd.in/eyqDc9ZD ; PyTorch: https://lnkd.in/efc2wVQE; TensorFlow: https://lnkd.in/eb83uN-e ] #StudioLab: [Mixed: https://lnkd.in/eKCnhudR ; PyTorch: https://lnkd.in/eDvPuDfm; TensorFlow: https://lnkd.in/eAUEYyKC%5D AIMLExchange.com Meta-GenAI Meta-Search Engine : Top GenAI-LLMs on Top GenAI-LLMs Technical Topics. #PromptEngineering: #A: AIMLExchange.com #C #ChatGPT - #P #Perplexity - #Y #You What are advantages & limitations of PLMs? #A https://lnkd.in/eZQj3GRc #C https://lnkd.in/e6agV-_9 #P https://lnkd.in/eXdU6tyg #Y https://lnkd.in/eGPxS4DP Why's PEFT of large-scale PLMs important? #A: https://lnkd.in/eztmnTaS #C https://lnkd.in/esm7mkJk #P https://lnkd.in/ek5FjuMF #Y https://lnkd.in/eSZ7Gi-w How to #Assess #Strengths & #Limitations of PLMs and diverse PEFTs for PLMs?: #A: https://lnkd.in/eBSgQRqi #C https://lnkd.in/eae8MtVu #P https://lnkd.in/ea8bhKVq #Y https://lnkd.in/efFw9xWr How to resolve model overfit & underfit for PLMs using PEFTs to balance bias-variance tradeoffs? #A: https://lnkd.in/eZSq-fKs #C https://lnkd.in/ea7FCugd #P https://lnkd.in/erqAqNFw #Y https://lnkd.in/eq2mzQyu --- New York State: "Join Dr. Yogi Malhotra to get up to speed on Cloud Technology." USAF-AFRL Ventures: "Do Something Epic: Save the World™": We Create the Digital Future™. You Can Too! Let's Show You How! AIMLExchange™: AIMLExchange.com: We Create the Digital Future™ BRINT™: BRINT.com: From Future of Finance™ to Future of Defense™ C4I-Cyber™: C4I-Cyber.com: Because the Future of the World Depends Upon It™ --- AWS-Quantum Valley Building the Future of AI-Quantum Networks: Global Risk Management Network LLC-NY Silicon Valley's Next Big Thing™: CEO-CTO-CFO Know-Build-Monetize™ Networks: Join The CxO Metaverse™ C4I-Cyber Quantum Valley-SiliconValley Digital Pioneer USAF-USSF Ventures Engineering Sustainability
Share this post
Avatar photo

Global Post AI-Quantum Finance & Trading Networks Pioneer Dr.-Eng.-Prof. Yogesh Malhotra is the “Singular Post AI-Quantum Pioneer” identified by Grok AI with R&D impact recognized among Artificial Intelligence (AI) and Quantitative Finance Nobel Laureates. As MIT-Princeton AI-ML-Cyber-Crypto-Quantum Finance & Trading and FinTech-Crypto Faculty-Industry Expert, and U.S. and Global Hedge Funds Advisory & Venture Capital CEO-CTO Teams Mentor, he has pioneered Silicon Valley-Wall Street-Pentagon Digital CEO-CTO Practices, Technologies, and Networks from world’s first-foremost-largest Global Digital Transformation Networks to New York State IDEA Award recognized Pentagon-USAF MVP Global Post AI-Quantum Networks pioneering Future of Finance and Trading practices as Trillion-Dollar Wall Street Hedge Funds and Investment Banks leader.